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Abstract
We study the phonon dynamics in a biased molecular junction with the interplay of
electron–phonon coupling and Coulomb interaction. These interactions are taken into account
within the self-consistent Born approximation and mean-field methods. It is found that the
Coulomb interaction can enhance the nonequilibrium phonon generation. A general formula for
the zero-frequency power spectral density of the phonon energy current fluctuation is presented
in terms of the nonequilibrium phonon Green’s functions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The advance in nano-technology has made it possible to have
electrons transported through a single molecule. Compared
with semiconductor devices, electrons in molecular conductors
experience strong coupling to the vibrational degree of
freedom [1–3]. This strong coupling not only modifies
the electron behaviors such as the electronic spectrum and
the conductance, but also excites nonequilibrium phonons
(vibrational quanta of the conductor) in the conductor region
accompanied by energy exchange between electrons and
phonons. As great achievements have been made in the
study of electronic transport behavior of molecular conductors
with vibrational effects [4–14], an increasing interest has been
attracted to the nonequilibrium phonon dynamics due to the
electron–phonon coupling [2, 15, 16]. The study of phonon
dynamics at the mesoscopic scale has its driving force from not
only science but also technology. For example, when electronic
devices become smaller and smaller, the generated heat, which
is an unavoidable by-product of electron–phonon coupling in
the devices, will lead to some consequences. It will increase
the temperature in electronic devices, decrease the reliability
and lead to undesired parametric changes. It is thus important
to describe the performance of molecular devices by taking
the full dynamics of both electrons and phonons on an equal
footing.

The coupled transport of electrons and phonons in
molecular devices has been studied by different theoretical
approaches. However, most of these previous studies neglect
the Coulomb interaction, which has been proven to be
significant in small conductors [17]. The phonon dynamics
will be complicated by the interplay of the vibrational effect
and the Coulomb interaction. It is the aim of the present paper
to study the nonequilibrium phonon dynamics in molecular
devices mediated by Coulomb interaction. To take the full
dynamics of electrons and phonons on an equal footing, we
apply the well established self-consistent Born approximation
(SCBA), which has the advantage of including Coulomb
effects at the mean-field level. We use different mean-field
techniques in a self-consistent manner to study the Coulomb
interaction according to its interaction strength U . It is
natural to distinguish the two regimes of molecular transport
with Coulomb interaction [18]. One is for molecules with
weak Coulomb strength, where the dominant energy scale
is the contact coupling. For this weak interaction limit,
the self-consistent Hartree–Fock mean-field approximation is
appropriate. Another regime is for the cases where the
Coulomb strength is the dominant energy scale. This happens
when the molecule is very small. For example, the Coulomb
charging energy of benzene is about 3 eV, which is much
larger than the electrode coupling (<0.2 eV for benzene di-
thiol on gold) [18]. For the small molecules with very large
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Figure 1. Schematic plot of the model system. The quantum dot is
coupled to the electron leads and phonon bath. At nonzero voltage,
the driven electron current generates the heat current due to the
electron–phonon coupling in the dot.

charging energy, we may approximate the Coulomb strength
to be infinity and the electron correlation effect must be taken
into account. For this infinite-U strongly correlated regime,
we adopt the slave-boson mean-field technique [19–23] to
investigate the interplay of the strong Coulomb correlation and
the electron–phonon coupling. Our numerical results show
that the Coulomb interaction plays an important role in the
phonon dynamics. In parallel to the electron current noise [24],
previous studies have developed expressions of phonon energy
current fluctuation with the Landauer scattering formalism
for thermal transport [25–27]. However, in our model, the
phonon energy current originates from the inelastic processes
of electron–phonon interactions where the Landauer formalism
is no longer valid. With the help of the nonequilibrium Green’s
function technique [28, 29], we present a general formula for
the phonon energy current fluctuation with interaction effects.

2. Theoretical formalism

2.1. Model Hamiltonian

We consider a model of one single molecular level with spin
degeneracy coupled to two ideal leads in thermal equilibrium.
Electrons on this molecule are also coupled to the molecular
vibrational degree of freedom. The generated phonon on the
molecule can be dissipated by its coupling to the environment,
which is represented by a bath of harmonic oscillators in
thermal equilibrium. A schematic plot of the device is shown
in figure 1. The system Hamiltonian is the sum of terms of
electron and phonon parts as well as their mutual interactions.
In second quantization, it is given by

H =
∑

σ

ε0d†
σ dσ + Ud†

↑d↑d†
↓d↓

+
∑

kασ

εkαc†
σ kαcσ kα +

∑

σ kα

(Vkαc†
σ kαdσ + h.c.)

+ h̄ω0a†a +
∑

q

h̄ωqb†
qbq +

∑

q

Vq(b
†
q + bq)(a

† + a)

+
∑

σ

M(a† + a)d†
σdσ , (1)

where the first two terms on the right-hand side (RHS) of
equation (1) describe the electrons in the isolated molecule
with Coulomb strength U . The third term represents the

electrons in the αth (α = L, R) lead. d†
σ (dσ ) and c†

σ kα (cσ kα)
create (destroy) electrons with spin index σ in the molecule
with energy ε0 and the state in the αth lead characterized
by the quantum number k and energy εkα , respectively. The
fourth term on the RHS of equation (1) corresponds to the
coupling between the molecule state and states in ideal leads
by the hopping matrix element Vkα . The fifth and sixth terms
on the RHS of equation (1) represent the vibrational modes
of the molecule and its environment, i.e. the heat bath. a†

(a) and b†
q (bq) are the boson creation (annihilation) operators

of the molecular vibrational mode with frequency ω0 and the
qth mode in the heat bath with energy ωq , respectively. The
seventh term is the interaction between these phonon modes
with coupling matrix element Vq . The last term corresponds to
inelastic interaction with the vibrational mode of the molecule
when electrons are tunneling through the device. M is the
electron–phonon coupling element.

2.2. Formula for the phonon energy current and its fluctuation

We are interested in the phonon dynamics in the molecular
junction, which can be generated by the electron current via
electron–phonon coupling. To describe the full dynamics of
electrons and phonons, we use the nonequilibrium Green’s
function technique. The definition of the electron and phonon
Green’s function can be found in standard textbooks [29].
The lesser (D<) as well as the retarded (DR) phonon Green’s
function satisfy, respectively, the Keldysh and Dyson equations
as

D<(ε) = DR(ε)�<(ε)DA(ε)

DR(ε) = {(DR
0 (ε))−1 − �R(ε)}−1,

(2)

where �A(R) is the advanced (retarded) phonon self-energy,
DR

0 is the retarded Green’s function for the phonon without
interaction, and DA is the advanced phonon Green’s functions,
which can be found from the conjugate of the retarded phonon
Green’s function DR. The total phonon self-energy � contains
not only the coupling between the vibrating mode and the
environment �ph, but also terms �el arising from the electron–
phonon interaction. For the coupling between the molecular
phonon mode and those in the environment, the corresponding
retarded and lesser self-energies can be given as �R

ph(ε) =
− i

2 sgn(ε)γ and �<
ph(ε) = −iγ F(ε), where γ is the energy-

independent coupling strength and F(ε) = fph(ε) for ε > 0
and F(ε) = 1+ fph(−ε) for ε < 0. fph is the Bose distribution
function of the phonon. The electron–phonon interaction is
investigated within the SCBA [8–10, 31]; the retarded �R

el
and lesser �<

el phonon self-energies due to electron–phonon
coupling are obtained as

�R
el(ε) = −i

∑

σ

M2

×
∫

dε ′

2π
[G<

σ (ε ′)GA
σ (ε ′ − ε) + GR

σ (ε ′)G<
σ (ε ′ − ε)] (3)

�<
el(ε) = −i

∑

σ

M2
∫

dε ′

2π
G<

σ (ε ′)G>
σ (ε ′ − ε), (4)

where GR(A) and G<(>) are the retarded (advanced) and lesser
(greater) electron Green’s functions. Equations for electron
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Green’s functions can be found following equations (2) by
replacing D by G and � by 	, respectively, where 	 is the
electron self-energy which arises from the dot–lead coupling
	el and the electron–phonon interaction 	ph. For the sake
of simplicity, the electron retarded and lesser self-energies
associated with the dot–lead coupling are taken into account in
the symmetric wide band approximation as 	R

L/R,σ (ε) = − i
2


and 	<
L/R,σ (ε) = i
 fL/R(ε), where 
 is assumed constant

and fα is the Fermi distribution function in the αth lead. In
the spirit of SCBA and after omitting the Hartree terms, the
retarded (	R

ph) and lesser (	<
ph) self-energies are given by

	R
ph,σ (ε) = i

∫
dε ′

2π
M2[DR(ε − ε ′)G<

σ (ε ′)

+ DR(ε − ε ′)GR
σ (ε ′) + D<(ε − ε ′)GR

σ (ε ′)]

	<
ph,σ (ε) = i

∫
ε ′

2π
M2 D<(ε − ε ′)G<

σ (ε ′).

(5)

In order to find out the generated phonon energy current,
our derivation follows the standard approach for the electron
particle current. The phonon energy current operator is related
as the time change rate of the total energy of the phonon
modes in the heat bath: Ĵph = d

dt

∑
q h̄ωq b†

qbq . Within the
nonequilibrium Green’s function technique and along the line
of the derivation of the electron current expression by Meir and
Wingreen [30], the expectation value of phonon energy current
can be derived via the full dynamics of the molecular phonon
part as

Jph = −1

2

∫ ∞

−∞
dε

2π h̄
ε[�<

el D> − �>
el D<], (6)

where D> is the full greater phonon Green’s function.
Obviously, one can see from equation (6) that, for �<

el =
�>

el = 0, Jph = 0, i.e. no energy exchange between
the electron and phonon subsystems, for vanishing electron–
phonon interaction.

In the above analysis, the phonon energy current flows
from the localized phonon mode to the heat bath. It originates
from the energy loss due to electron–phonon interaction when
the electron tunnels through the dot. Therefore, this device
can be deemed as a fictitious two terminal device for energy
transport, where the heat bath and the electron reservoirs are,
respectively, the two terminals which supply or absorb energy.
Due to the energy conservation, instead of considering the
energy absorbed by the phonon bath as given above, the heat
flux can also be measured from another ‘terminal’, i.e. the
energy emitted by the electron reservoirs. Indeed, Frederiksen
et al [10, 12] have derived an expression for the energy flux
from the electron dynamics perspective as

Pph = 1

h̄

∑

σ

∫ ∞

−∞
dε

2π
εTr[−	<

ph,σ (ε)G>
σ (ε)+	>

ph,σ (ε)G<
σ (ε)],

(7)
where the energy current is expressed by the Green’s functions
and self-energies of the electron part. In their derivation of
equation (7), they used the free phonon Green’s function and
neglected the dynamics of the phonons. In the SCBA, identical
expressions for the energy loss by tunneling electrons through

the dot when the full dynamics of phonon are taken into
account can be derived. By inserting the full self-energies and
Green’s functions, equations (7) and (6) can be proved to be
identical after some straightforward calculations. This identity
thus fulfils the implicit requirement of energy conservation
during the energy exchange process. Therefore, the energy
conservation law is obeyed by the SCBA for the electron–
phonon interaction.

Analogous to the electron noise, the phonon energy
current is also fluctuating in time. This fluctuation can be
characterized by its power spectral density, i.e. the Fourier
transform of the phonon energy current correlation function,
as

Sph(ω) =
∫ ∞

−∞
dt eiωt 〈{� Ĵph(t),� Ĵph(0)}〉 (8)

where � Ĵph(t) = Ĵph(t) − Jph(t). With the help of the Wick’s
theorem and the Langreth rules for analytic continuation, the
power spectral density of the phonon energy current fluctuation
in the zero-frequency limit can be evaluated as

Sph(0) = 1

h

∫
dε ε2{[DR�<

ph + D<�A
ph]

× [DR�>
ph + D>�A

ph] − D<�>
ph

− D<(�>
ph DA�A

ph + �R
ph D>�A

ph + �R
ph DR�>

ph) + h.c.},
(9)

where D> and �>
ph are respectively, the greater Green’s

function of the phonon and the greater phonon self-energy due
to coupling to the bath. The derivation of equation (9) is briefly
outlined in the appendix. Equation (9) expresses the phonon
energy current noise through a molecular dot in terms of the
full dynamics of the phonon. It contains not only fluctuations
in thermal equilibrium, but also nonequilibrium noise due to
the phonon generation by electron–phonon interaction.

Apart from the present case where energy flux flows
between the energy reservoirs and the phonon bath,
equation (9) is also valid for the study of phonon energy current
fluctuations where the phonon flux is driven by the temperature
difference of two heat reservoirs. Scattering effects other
than the electron–phonon interaction can also be studied by
equation (9) with an appropriate form of the Green’s functions
and self-energies.

In the above derivation, we have only one energy level
and vibrational mode in the presence of electron–phonon
interaction. However, equations (6) and (9) are able to describe
more complicated situations such as the spin-related processes
by means of the full Green’s functions. A generalization to
include cases of the multiple modes and energy levels can be
achieved by writing quantities such as the Green’s functions
in the matrix form analogous to multi-level electron transport
problems.

2.3. Approximations to the Coulomb interaction

An exact analysis of the interplay of electron–phonon
interaction and Coulomb interaction has long been nontrivial
in theoretical studies. One has to rely on some approximations.
We note that the SCBA, which has the advantage to take into
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account the dynamics of both electrons and phonons on an
equal footing, can easily be generalized to include the Coulomb
interactions in the mean-field level. In this study, we will focus
on two limits where appropriate mean-field approximations
can be applied: (i) the weak U limit in the Hartree–Fock
mean-field approximation and (ii) the infinite U Kondo regime
with the slave-boson mean-field approximations. For situations
where the mean-field methods are no longer valid, one has
to take into account the correlation between electron–phonon
and Coulomb interactions with more efforts. Other advanced
techniques such as the equation of motion or the canonical
transformation methods are needed. This is beyond the scope
of the present paper.

For weak Coulomb interaction, it is safe to neglect the
correlation effect and the Coulomb interaction term can be
approximated as Ud†

↑d↑d†
↓d↓ → U(〈n↑〉d†

↓d↓ + 〈n↓〉d†
↑d↑),

where 〈nσ 〉 is the occupation number of electrons in the
quantum dot with spin σ , which will be self-consistently
determined from

〈nσ 〉 = 1

2π

∫
dε Im G<

σ (ε). (10)

The phonon energy current and its fluctuation can be
determined after self-consistently solving the coupled Hartree–
Fock mean-field approximation for the Coulomb effect and the
Born approximation for the vibration effect.

For strong Coulomb interaction, the correlation effect
plays an important role and the Hartree–Fock approximation
is no longer valid. The low temperature of the quantum dots
with strong Coulomb interaction is governed by the Kondo
effect. At low bias energy, the transport of the Kondo dot in
the infinite U limit can be well described in the slave-boson
language [19, 22, 23]. Since the infinite U prevents any double
occupation in the dot, the slave-boson technique introduces
the transformation dσ = b† fσ , where the boson operator b†

creates one empty state in the dot and the pseudo fermion
operator fσ annihilates one occupied state in the dot. In order
to fulfil the constraint of nonexistence of double occupation in
the Kondo dot, an additional term with the Lagrange multiplier
λ is introduced. Therefore, the Hamiltonian equation (1) in the
slave-boson language reads

HSB =
∑

σ

ε0 f †
σ fσ + λ

(∑

σ

f †
σ fσ + b†b − 1

)

+
∑

kασ

εkαc†
σ kαcσ kα +

∑

σ kα

(Vkαc†
σ kα fσ + h.c.)

+ h̄ω0a†a +
∑

q

h̄ωqb†
qbq +

∑

q

Uq(b
†
q + bq)(a

† + a)

+
∑

σ

M(a† + a) f †
σ fσ . (11)

Following the standard approaches [19, 22, 23] by
neglecting the fluctuation of the pseudo-boson operator, one
can approximate b by its mean-field value 〈b〉 as a c-
number. This mean-field approximation has been widely used
to investigate the Kondo physics in the infinite U limit at zero
temperature and low bias voltage. The mean-field value 〈b〉
and λ can be found from the equation of motion of the boson

operator and the constraint as

λb2 +
∑

kησ

Vkησ 〈c†
kησ fσ 〉 = 0

∑

σ

〈 f †
σ fσ 〉 + b2 = 1.

(12)

After some algebra and inserting the mean-field approxima-
tion, the above equations can be enclosed by the nonequilib-
rium Green function of the quantum dot as

λ〈b〉2 = i
∑

σ

∫
dε

2π
G<

f (ε)[ε − (ε0 + λ)]

〈b〉2 − 2i
∫

dε

2π
G<

f (ε) = 1,

(13)

where we have omitted the spin index of the dot Green’s
function due to the spin degeneracy. Both the mean-field value
〈b〉 and λ will be determined by solving the above equations in
a self-consistent manner.

3. Numerical results and discussions

In this section, we present our numerical results for the phonon
dynamics of the molecular quantum dot. Without losing
generality, we will take h̄ω0 = 1, e = 1 and h̄ = 1, where
e is the electron charge unit. In the numerical investigations,
we use the following set of parameters. The electron level
is fixed at ε0 = −2. The coupling constants are 
 = 1,
γph = 0.05 and M = 0.075. The system is at zero temperature.
For more realistic systems or comparing with experiments,
these parameters may be replaced by either experimental fitting
data or first principle calculations. The combination of the
nonequilibrium Green’s function formalism with ab initio
techniques to simulate either the electron transport [32] or
the electron–phonon coupled transport [12] through molecular
devices has achieved much success in recent years. It is
therefore feasible to extend the present nonequilibrium Green’s
function formalism by extracting parameters of molecular
devices via first principle calculations.

First we discuss the heat generation as a function of the
bias voltage due to the electron–phonon interaction. The
heat generated in the dot characterizes the energy transferred
from the electrons to the phonon bath. The numerical results
are obtained from equation (6) and displayed in figure 2 for
different Coulomb interaction strengths. Due to the validity
of the slave-boson mean-field method, we restrict ourselves
to the low bias voltage regimes. All these calculations show
that no heat is generated when bias is zero. Without Coulomb
interaction (U = 0), as we apply voltage bias to the dot, finite
heat is generated. For very low voltage, this heat generation
is not obvious (note the log scale of heat generation in our
figure), as few electrons can tunnel through the dot. As
we increase the voltage bias, more heat will be generated as
more electrons can transport through the dot and participate
in the electron–phonon coupling. This behavior of heat
generation for a vibrating dot without Coulomb interaction has
been thoroughly discussed in the literature [14, 16]. In the
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Figure 2. The heat generation in the quantum dot as a function of the
applied voltage bias. The curves are obtained by setting different
Coulomb interaction strengths U as displayed in the figure. More
heat is generated when we increase the Coulomb interaction strength.
For finite U , the Coulomb interaction is approximated by the
self-consistent Hartree–Fock approximation. For infinite U , the dot
operates in the Kondo regime; the transport properties are obtained
by the slave-boson mean-field approximation.

following, the interplay of Coulomb interaction and electron–
phonon coupling is studied for different Coulomb strength
parameters with appropriate approximations as discussed
above. We have chosen the Coulomb strength to be U =
0, 0.5, 1.0,∞ to make the dot operate from the noninteracting
limit to the strongly correlated Kondo regime. The results
for finite U are obtained in the self-consistent Hartree–Fock
approximation. This approximation is valid at low interaction
strength and the correlation effects are not included. With the
increase of Coulomb interaction strength, the Hartree–Fock
approximation is less reliable and misses important correlation
effects such as the multiple transition between the lead and
the dot and therefore cannot give a correct description in the
Kondo regime. We must therefore go beyond the Hartree–
Fock approximation to investigate the phonon dynamics in
the large U regime. In this study, we adopt the infinite U
slave-boson mean-field theory to study the phonon dynamics
in the Kondo regime. We emphasize that, due to the neglecting
of correlation effects in Hartree–Fock approximations, the
numerical results can only be understood in a qualitative
manner, especially for relatively large Coulomb interaction
strength U . Our results show that, for fixed voltage bias,
more heat is generated if the Coulomb interaction strength
becomes greater. This can be qualitatively understood as the
following. From the mean-field approximation, we can see
that the main contribution from the Coulomb interaction is the
renormalization of the energy level of the dot. As we increase
the Coulomb strength from zero to infinity, the energy level
of the dot will be pushed from the bare energy state of the
noninteracting dot, which is far below the Fermi energy, to the
Kondo resonance, where a peak of density of states appears
at the Fermi energy. This is most significant for the infinite
U case, where the dot operates in the Kondo regime. For
electron transport at low temperatures, the transport properties
are mainly determined by the electrons near the Fermi level.
As the electron’s dwell time in the dot is proportional to the

Figure 3. The effective temperature of the dot as a function of the
bias voltage for different Coulomb strengths U . The parameters are
the same as figure 2.

density of states, the electrons near the Fermi energy can stay
a longer time in the dot if the Coulomb strength increases.
These electrons can have higher probability to interact with the
phonon degree of freedom and thus prefer to transfer energy to
the phonons. As a consequence, more heat is generated when
the Coulomb interaction pushes the effective energy level of
the dot to the resonance.

A direct result of heat generation is the rising of local
temperature. Recently, experimental measurement of the
current-induced local temperature was reported [33]. It is
instructive to introduce an effective temperature to characterize
such a heating effect. This effective temperature is related
to local population of phonons determined by the Bose
distribution function: nph = nB(Teff). To find the phonon
population, we start from the balance equation of the phonon
number as

dnph

dt
= jph

h̄ω0
− γph[nph − nB(h̄ω0, T )] = 0, (14)

where T is the environment temperature at the equilibrium
phonon bath. The numerical result for the effective temperature
at the dot is displayed in figure 3. The parameters are the
same as those of figure 2. One can see that at zero bias the
local temperature of the dot increases as we apply the bias
voltage. Our results show that the temperature increases more
drastically when the Coulomb interaction becomes stronger in
accordance with previous observations.

Another question of interest is how much energy is lost
due to this electron–phonon coupling. The heat efficiency
is defined as the ratio of the generated heat jph and the
total energy supplied by the electric source Pe = IeV ,
where Ie is the total electric current. Figure 4 presents
the numerical results of the heat efficiency for the model
device with different Coulomb parameters as discussed above.
From the numerical results, we can see that even for the
very strong Coulomb interaction and relatively large electron–
phonon coupling parameters used here, the efficiency is around
1%.

In figure 5, we show the numerical examples of the
fluctuation of the phonon energy current using equation (9),
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Figure 4. The efficiency of the energy exchange between the
electrons and phonons for different Coulomb strengths U . The
parameters are the same as figure 2.

where the phonon energy current originates from electron–
phonon coupling. The parameters of the calculation are
identical with the previous results in figures 2–4. We can see
that the power spectral density of the phonon energy current
fluctuation can be enhanced by the Coulomb interaction.
Previous studies on the fluctuation of phonon energy current
are based on the generalization of the Landauer scattering
formalism and are valid in the elastic thermal transport. We
note that our formula is based on the nonequilibrium Green’s
function technique and is able to deal with the interplay
of electron–phonon coupling or Coulomb interaction in the
phonon transport as shown in the model calculations presented
here. The phonon energy current fluctuation presented here
is not only interesting as a phononic analogue of mesoscopic
electron phenomenon, but might also be used to provide
new insights on fundamental questions, such as the entropy
generation [34, 35]. We hope more interesting phenomena
of the influence of interaction effects on the phonon current
fluctuations can be found in the future. Before the application
of the present formula to more general physical systems of
phonon dynamics, it is meaningful to discuss some differences
between the phonon energy current fluctuation and the electron
current fluctuation. The electron current fluctuation has been
widely studied to reveal useful information, such as the
elementary charge transferred, the statistics of the particles and
their correlation effect, in electron transport. However, if one
considers the phonon dynamics, some peculiar merits of the
phonon must be take into account. (i) The phonon number
is not a conserved quantity, in contrast to the total charge
in electron transport. The phonons which obey the boson
distribution can be generated or destroyed in their transport
processes. (ii) The energy quanta of phonons are different
for different modes in contrast to the electron charge quanta
for electrons or holes. All these peculiar merits make it
inappropriate to have a naive analogy of electron transport with
the phonon transport. More efforts in the future are needed to
characterize the phonon dynamics by its phonon energy current
fluctuation.

Figure 5. Fluctuation of the phonon energy current as a function of
the bias voltage for different Coulomb strengths U .

4. Conclusion

In summary, we have studied the mesoscopic phonon dynamics
in molecular electronics mediated by Coulomb interaction.
The electron–phonon interaction is taken into account within
the self-consistent Born approximation. With the help of mean-
field methods, the Coulomb interaction is investigated from
the lower interaction strength to the strongly correlated Kondo
regime. It is found that the Coulomb interaction contributes
energy level shift and enhances the nonequilibrium phonon
generation. A general formula has been presented to describe
the fluctuations of the phonon energy current generated by
electron–phonon coupling in molecular devices with the help
of the nonequilibrium Green’s function method.
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Appendix

In this appendix, we outline the derivation of the power spectral
density of the phonon energy current fluctuation formula in
equation (9). The phonon energy current operator can be found
from the change of the Hamiltonian (equation (1)) of the bath
region as

Jph = d
∑

q εqb†
qbq

dt
=

∑

q

i

h̄
εq [H, Nq]

= −
∑

q

εq Vq
i

h̄
(b†

q − bq)(a
† + a), (15)

where we used the notation εq = h̄ωq .
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This phonon energy current operator can be rewritten as

Jph = −
∑

q

εq Vq

h̄
P̂q Q̂a (16)

where the displacement and momentum operators are defined
by

Q̂a = a† + a P̂q = i(b†
q − bq). (17)

The phonon energy current fluctuation is defined
analogous to the electron noise [24, 36] as

Sph(t) = 1
2 〈{�Jph(t),�Jph(0)}〉 (18)

where �Jph(t) = Jph(t) − 〈Jph(t)〉, and the power spectral
density is defined as

Sph(ω) = 2
∫ ∞

−∞
dt eiωt Sph(t)

=
∫ ∞

−∞
dt eiωt [〈{Jph(t), Jph(0)}〉 − 2〈Jph〉2]. (19)

We are interested in the power spectral density at zero
frequency, i.e.

Sph(ω = 0) =
∫ ∞

−∞
dt[〈{Jph(t), Jph(0)}〉 − 2〈Jph〉2]. (20)

Inserting the explicit form of the phonon energy current
operator, the phonon energy current correlation is given by

〈{Jph(t), Jph(0)}〉 =
〈∑

qq ′

εqεq ′ Vq Vq ′

h̄2
[Qa(t)Pq(t)Qa(0)Pq ′(0)

+ Qa(0)Pq ′(0)Qa(t)Pq(t)]
〉

= M>(t, 0) + M<(t, 0). (21)

Here, we have defined the operator time-ordered operator
Mt (t, 0) as

Mt (t, 0) =
〈
T

{∑

qq ′

εqεq ′ Vq Vq ′

h̄2 Qa(t)Pq (t)Qa(0)Pq ′(0)

}〉
,

(22)
where T is the time-ordering operator. M< and M> are the
lesser and greater analytic operator of Mt , respectively.

Applying the Wick’s theorem, we have

〈T {Qa(t)Pq(t)Qa(0)Pq ′(0)}〉
= 〈T {Qa(t)Pq(t)}〉〈T {Qa(0)Pq ′(0)}〉

+ 〈T {Qa(t)Pq ′ (0)}〉〈T {Qa(0)Pq(t)}〉
+ 〈T {Qa(t)Qa(0)}〉〈T {Pq ′(0)Pq(t)}〉. (23)

For the sake of simplicity, we can define the following
Green’s function:

DAB(t, t ′) = −i〈T {A(t)B(t ′)}〉, (24)

where A and B can be either the displacement or the
momentum operator. Equation (23) can then be written as

〈T {Qa(t)Pq(t)Qa(0)Pq ′(0)}〉 = −DQa Pq (t, t)DQa Pq′ (0, 0)

− DQa Pq′ (t, 0)DQa Pq (0, t) − DQa Qa (t, 0)DPq Pq′ (0, t).

(25)

If A and B are both displacement operators, DAB

is nothing but the phonon Green’s functions used in our
calculation. Now the task is to evaluate the Green’s functions
such as DQa Pq′ and DPq Pq′ . For this purpose, we can make
use of the equation of motion method [37]. After some
straightforward calculations, we arrive at

DPq Pq′ (t, t ′) = D0
Qq Qq′ (t, t ′)δqq ′

− Vq Vq ′

ωqωq ′

∫ ∫
dt1 dt2 D0

Qq Qq
(t, t1)

×
[

∂2

∂ t2
1

DQa Qa (t1, t2)

]
D0

Qq′ Qq′ (t2, t ′) (26)

and

DQa Pq (t, t ′) = Vq

ωq

∫ [
∂

∂ t1
DQa Qa (t, t1)

]
D0

Qq Qq
(t1, t ′)dt1

(27)
where

D0
Qq Qq

(t, t ′) =
[

∂2

∂ t2
+ ω2

q

]−1

(−2ωq)δ(t − t ′) (28)

is the noninteracting phonon Green’s function of mode q .
Now, inserting these expressions in the noise expression,

making use of the Langreth rules for analytic continuation [29],
and after the Fourier transform, we can arrive at the expression
for the phonon energy current fluctuation equation (9).

Sph(0) = 1

h

∫
dε ε2{[DR�<

ph + D<�A
ph]

× [DR�>
ph + D>�A

ph] − D<�>
ph

− D<(�>
ph DA�A

ph + �R
ph D>�A

ph + �R
ph DR�>

ph)+ h.c.},
(29)

where we have introduced the self-energy due to the coupling
of the phonon mode in the molecule with the phonon bath,
which is given by �ph(ω) = ∑

q Vq D0
Qq Qq

(ω)Vq .
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